Archives pour la catégorie chimie prébiotique

Mais d’où vient la matière qui a permis à la vie d’apparaître ? #LyonScience2015

Je ne sais plus où donner de la tête… Au moment où j’ai pensé parler de chimie prébiotique lors de cette journée Lyon Science 2015, je ne pensais pas que cette thématique, que j’adore suivre depuis mes premières années à l’ENS de Lyon réservait autant de surprises et d’actualités… Me voilà, face à vous, totalement dépassé par les événements… Je vais quand même essayer de parler de ce sujet formidable qu’est l’apparition sur Terre de la matière, des molécules nécessaires à l’apparition de la vie.

C’est quoi, cette matière ?

Cette matière, c’est tout simplement les briques élémentaires du vivant. Ou plutôt, les briques élémentaires du vivant… D’il y a 3,5 milliards d’années… Bon, le soucis, c’est qu’on ne sait pas encore tout à fait quelles étaient ces briques… Acides aminés, pour former des premières protéines ? ou nucléosides, pour fixer un code génétique sous forme d’ARN ? C’est un des nombreux débats passionnants qui parcourent les amateurs de chimie prébiotique… Mais revenons encore en arrière… Les chimistes cherchent des traces de molécules organiques, c’est-à-dire composées principalement de carbone, d’hydrogène, mais aussi d’oxygène et d’azote, qui ne proviendrait pas d’organismes vivants.

Mais quelle est donc cette source de matière organique prébiotique ?

Alors, ils cherchent partout, les chimistes… Déjà, dans les années 1950, des certains Stanley Miller et Harold Urey ont montré qu’en faisant se décharger des arcs électriques dans un gaz censé simuler l’atmosphère de l’époque, on pouvait obtenir des acides aminés, et d’autres molécules organiques. Magnifique expérience, résultats remarquables… Mais depuis, on s’est rendu compte que l’atmosphère d’il y a 4 milliards d’années était probablement très différente, et que cette expérience ne fonctionnait, a priori, pas avec la bonne composition…

 

Stanley Miller, en 1999, devant une reconstitution (un peu maquillée) de son expérience... (Wikipédia)

Stanley Miller, en 1999, devant une reconstitution (un peu maquillée) de son expérience… (Wikipédia)

Je ne vais pas énumérer toutes les expériences, toutes les idées qu’ont eu les scientifiques pour identifier la, ou les sources de matière organique prébiotique. Par contre, deux hypothèses sortent, (et de loin !) du lot, et mérite vraiment qu’on s’y intéresse…

Dans un excès tout à fait remarquable, il faut regarder soit tout en haut, au delà des nuages, aux confins du système solaire, là où naissent les comètes, soit tout en bas, à – 5000 m de profondeur, au niveaux des sources hydrothermales… Sinon, ce serait trop simple !!

 Les comètes ? Et pourquoi pas les météorites, tant qu’on y est ?

Mais oui, les comètes ET les météorites ! Dès le XIXe siècle, Berzélius a identifié dans la météorite d’Orgueil de la matière organique. Principalement des composés proches du charbon, certes, mais il faut un début à tout !

Météorite d'Orgueil

Météorite d’Orgueil

Tout s’est accéléré avec la découverte de la météorite de Murchison, tombé en Australie en 1969. Là, des acides aminés, des glucides, des bases azotées ont été découvert, en grande quantité (environ 0,01 % de la masse). Cette météorite est en fait assez banale. En fait, en estimant l’importance du bombardement terrestre ces quelques derniers milliards d’année, on s’est rendu compte que la quantité de matière organique arrivée de l’espace est plus grande que la quantité de matière organique présente actuellement dans la biosphère !!

Un fragment de la météorite de Murchison, qui pesait, au total, plus de 100 kg

Un fragment de la météorite de Murchison, qui pesait, au total, plus de 100 kg

Bref, sans s’emballer, (un peu quand même !), on peut estimer que l’espace a été une gigantesque source de matière organique prébiotique.

Et le fond des océans alors ?

C’est l’autre grande source possible… Et quelle source !

Une source hydrothermale dans la fosse des Caïmans, à - 5000 m (source : ASP)

Une source hydrothermale dans la fosse des Caïmans, à – 5000 m (source : ASP)

Les sources hydrothermales se situent au niveau des dorsales océaniques, là où l’épaisseur de la croûte terrestre est la plus fine. De l’eau s’infiltre dans les roches, se réchauffe à proximité du magma, puis remonte vers le plancher océanique, à des pressions énormes (des centaines de bars), et des températures très hautes (plusieurs centaines de degrés), entraînant avec elle des gaz divers, des minéraux et des métaux au passage. C’est là que les yeux du chimiste lyonnais s’éclairent… Oui parce qu’à Lyon, depuis V. Grignard, Prix Nobel de chimie en 1912, jusqu’à Y. Chauvin, Prix Nobel en 2005, on aime bien quand on parle de chimie organométallique, cette alliance qui paraît parfois contre nature entre le froid métal et la chaude vie…

A gauche : Victor Grignard : prix Nobel 1912 pour ses travaux sur les organomagnésiens A droite : Yves Chauvin, prix Nobel 2005 sur la réaction de métathèse

A gauche : Victor Grignard : prix Nobel 1912 pour ses travaux sur les organomagnésiens
A droite : Yves Chauvin, prix Nobel 2005 sur la réaction de métathèse

Tout est réuni pour la synthèse de molécules organiques : des sources « pratiques » des éléments Carbone, Hydrogène, Oxygène, Azote, de l’énergie (sous forme thermique), et des minéraux variés, riches en métaux comme le fer, cuivre, argent, zinc, qui permettent de catalyser les réactions de synthèse organique… Reste que l’exploration du fond des océans semble plus délicate que celle de l’espace, et pour l’instant, les quelques expériences menées ont puvus  seulement mettre en évidence l’existence d’hydrocarbures abiotiques contenant de 1 à une dizaine d’atomes de carbone… Alors que les chimistes parle « d’évidence » d’apparition de ces composés au niveau des sources hydrothermales, il manque encore les preuves expérimentales… Malgré cela, je vous avoue que j’adore cette hypothèse… Sans doute des restes de géocentrisme de ma part…

Et les actualités alors ?

Je vous parlais d’actualité en début d’exposé… Alors je vais juste vous en livrer deux… et demi…

Il y a quelques semaines, une équipe française a reproduit les conditions de synthèse de glace pré-cométaire, tel que cela est censé se passer dans les confins du système solaire, là où naissent les comètes… Et ils ont obtenu, pour la première fois, une grande quantité d’acides aminés, glucides, et autres aldéhydes nécessaires aux premières briques du vivant…

L’autre nouvelle est venue d’une des lunes de Saturne, Encelade : de fantastiques geysers s’échappent de la planète, et leur composition a pu être étudiée : principalement de l’eau, mais aussi une grande richesse en carbone, sous forme probable d’hydrocarbure, même s’il est trop tôt pour en savoir plus… Ils proviendraient de sites hydrothermaux au coeur de la lune…

La demi-actualité ? C’est le robot Philae bien sûr ! Il doit se réveiller… Maintenant ! Avec ses instruments de mesure sophistiqués à bord, une de ses principales missions et d’analyser la composition organique de la comète Tchouri-Gerasimenko, pour donner des indications sur l’origine de ce qui nous compose encore aujourd’hui…

 

Sources

L’auto-catalyse : le concept-clé de l’apparition de la vie (1)

Quand on parle de l’apparition de la vie sur Terre, des questions reviennent inlassablement, sans qu’il soit aisé d’y apporter une réponse tranchée et définitive. Par quel mécanisme les molécules pré-biotiques se sont formées ? A quel endroit la vie est apparue ? Comment ces premières molécules ont pu s’auto-organiser, se multiplier, se reproduire ?

Avant de continuer, je me rends compte que j’ai souvent parlé de ce thème qui me passionne sur ce blog (vous pouvez lire les articles de cette rubrique par ici). Cela ne fait pas de moi un « spécialiste » de la question, mais je suis heureux de partager mes connaissances, mes lectures, mes réflexions sur l’apparition de la vie. J’espère que de votre côté vous appréciez aussi.

Un concept chimique en particulier est fondamental pour répondre à la dernière des trois questions : il s’agit de l’auto-catalyse. Une revue de la littérature sur ce sujet vient de paraître dans le journal Angewandte, et cela mérite bien une petite explication de texte. J’invite surtout tous ceux qui lisent l’anglais à la parcourir, elle est de plus assez compréhensible quand on n’entre pas trop dans les détails…

On parle d’auto-catalyse lorsque le produit d’une réaction chimique agit comme le catalyseur de sa propre formation. On peut le schématiser de la façon suivante :

A\, +\, B\, \overset{C}{\rightarrow}\, C

Avec A et B des réactifs, C le produit qui sert aussi de catalyseur.

Au fait « catalyseur », ça veut dire quoi, déjà ? un catalyseur, c’est une espèce chimique intervenant dans une réaction qui n’est ni un réactif (qui est consommé) ni, normalement, un produit (qui est formé lors de la réaction). Son rôle est d’accélérer la réaction, voire de la rendre possible. Dans le cas de l’autocatalyse,  c’est le produit lui-même qui va interagir avec les réactifs, pour les « aider » à réagir ensemble.

Un exemple simple : la formation du savon

Il s’agit d’un exemple simple d’auto-catalyse, pour bien fixer les idées. Pour obtenir du savon, de façon schématique, on prend de l’huile et de la soude. L’huile est composée majoritairement de triglycérides (en haut sur le schéma), et la soude, c’est de l’eau qui contient des ions Na+; et OH-. lorsque les deux réactifs entrent en contact, on assiste à une réaction de « saponification », qui permet l’obtention de carboxylates de sodium, qui sont les molécules de savon.

saponification

Le soucis dans cette réaction, c’est que l’eau et l’huile ne sont pas miscibles : la réaction ne peut avoir lieu qu’à l’interface entre les deux solutions, et donc n’est pas efficace (trop lente). Heureusement, le produit de la réaction, le savon, va permettre une miscibilité des deux liquides beaucoup plus importante : l’eau et l’huile se mélangent, donc les réactifs entrent en contact dans la totalité du milieu, et donc la réaction accélère : on a bien un processus auto-catalytique : le produit permet à la réaction d’être plus efficace, et augmente ainsi sa vitesse.

Dans le domaine des molécules organiques susceptibles d’entrer en composition de la fameuse soupe prébiotique, on peut citer, la réaction de « formose », qui permet la formation auto-catalysée de molécules de type glucides. Le soucis, c’est qu’elle n’est absolument pas sélective : elle va permettre d’accumuler des glucides très variés, et souvent très complexes (à la limite, on obtient… du caramel !) à partir de molécules simples, mais c’est encore insuffisant : lorsqu’on étudie la chimie prébiotique, le problème d’accumulation des espèces chimiques organiques est important, mais encore faut-il sélectionner les bonnes ! (et… noyer les autres dans la masse.)

Quand le produit sert de modèle pour sa réplication

Un des mécanisme les plus importants en auto-catalyse correspond à la situation où le produit sert de « moule » pour la formation d’autres molécules identiques. En un schéma, voici le fonctionnement de cette catégorie majeure de réaction catalysée :

La première étape, est la « pré-formation » du produit, à l’aide des deux réactifs (schématisés en haut à gauche), qui vont s’apparier avec le « moule ». La deuxième étape est la formation de la liaison entre les deux réactifs. La troisième étape est le largage du produit, qui peut servir à nouveau comme moule, etc…

Ce mécanisme permet non seulement d’augmenter la vitesse de réaction, mais aussi de permettre une certaine sélectivité : seule la formation de produits qui peuvent servir de « moule » pour eux-mêmes va être favorisée.

Dans les travaux en chimie prébiotique, un des exemples emblématiques concernant ce mécanisme est la formation auto-catalytique de polynucléotides. Emblématique, parce que ces polynucléotides sont de structures très très similaires à des petits morceaux d’ARN.  Et il est assez probable que l’ARN ait servi à la fois d’enzymes (rôle aujourd’hui plutôt assuré par les protéines), et de support du code génétique (aujourd’hui assuré par l’ADN) chez les premiers êtres vivants. Valider expérimentalement la capacité de polynucléotides à s’auto-répliquer est ainsi fondamental dans cette hypothèse.

Le premier système autocatalytique permettant de former des oligonucléotides (légèrement modifiés) a été proposé par L.E. Orgel en 1983, et est décrit sur ce schéma :

Deux tri-nucléosides de séquences déterminées (ici "CCG" et "CGG") se couplent pour donner une molécule formée par 6 nucléosides, dont la séquence est conservée dans le processus (CCGCGG)

Deux tri-nucléotides de séquences déterminées (ici « CCG » et « CGG ») se couplent pour donner une molécule formée par 6 nucléotides, dont la séquence est conservée dans le processus (CCGCGG) 

Afin de rendre cette formation de brins de nucléotides plus efficace, on peut aussi lier le produit à un support solide, comme schématisé ci-dessous :

La première étape est l'immobilisation du "produit", les nucléosides vont former un brin complémentaire (étape 2 et 3), puis ce brin est relargué (étape 4)

La première étape est l’immobilisation du « produit », les nucléotides vont former un brin complémentaire (étape 2 et 3), puis ce brin est relargué (étape 4)

 

D’autres systèmes auto-catalytiques, plus efficaces, c’est-à-dire permettant une plus grande sélectivité (un seul produit ne formant d’une seule séquence bien précise), et une plus grande efficacité (en terme de vitesse de réaction) ont été mis au point pour la synthèse d’oligonucléotides, mais impliquent des mécanismes complexes, avec de multiples cycles catalytiques où les espèces produites par les une catalysent les autres… On s’approche petit à petit de la complexité des systèmes biologiques, en somme.

Grâce à ce modèle de « moule », on peut ainsi imaginer la sélection, et la multiplication de brins d’ARN capables de s’auto-répliquer. Et grâce au jeu des « erreurs » dans la reproduction des séquences (les ancêtres des mutations génétiques ?), on a pu passer de petits oligonucléotides à des plus longs, plus complexes, plus efficaces… jusqu’à obtenir les premiers codes génétiques ??

A suivre : la formation autocatalytique des proto-membranes, et une réponse à l’énigme de l’homochiralité du vivant.

« Mechanisms of Autocatalysis » A.J. Bissette, S.P. Fletcher Angew. Chem. Int. Ed. 201352, 12800-12826

>Nanotechnologie (3) : Les molécules auto-assembleuses… des tous petits pas vers les origines de la vie ?

>

Durant mes études en chimie, j’ai souvent entendu l’association de « chimiste » avec « fumiste ». C’est très éxagéré. Mais enfin, quand même, si les molécules pouvaient s’assembler d’elles-mêmes, plutôt qu’on développe des trésors de complexité pour le faire nous (les chimistes), ça serait pas si mal… Et puis, si on simplifie à l’extrême le fonctionnement des cellules vivantes, ne sont-elles pas elles-mêmes des usines qui s’auto-assemblent et s’auto-répliquent en permanence ??

Les chimistes n’en sont pas là.
Revenons aux bases. Ces auto-assemblages, c’est quoi ? cela consiste simplement en l’organisation spontanée d’un nombre plus ou moins important de molécules.
Et un exemple simple est le fonctionnement des tensio-actifs (savon et autres): mis en solution, et pour peu que la concentration soit suffisante, on obtient des micelles, des feuillets, …


 Pourquoi ? le jeu des attractions et répulsions des différentes parties des molécules en sont directement la cause… Allez ici pour en avoir une meilleure idée.
Quelques remarques :

  • Ces objets sont typiquement des nano-objets, comme la plupart des autres assemblages « supra-moléculaires ».
  • On peut interpréter cet assemblement, par une minimisation de l’énergie d’interaction entre les molécules : la superposition des parties hydrophobes entre elles, et hydrophiles entre elles, est moins coûteuse en énergie que le joyeux mélange aléatoire…
  • L’air de rien, l’observation de l’auto-organisation des tensioactifs montre comment se sont formés les parois des premiers êtres vivants : prenez une micelle, et doublez sa couche de tensioactifs : vous obtenez une bicouche, base des membranes cellulaires (en ultra simplifié)
Bon, c’est très bien, mais allons plus loin… 
Tout d’abord, repensons aux début de la vie : celle-ci ne s’est pas « inventée » avec la complexité qu’on lui connaît aujourd’hui. Il faut imaginer des procédés plus simples, permettant la réplication cellulaire. Une large communauté de chercheurs (dont le prix Nobel 1989,  Thomas Cech) pensent qu’il faut imaginer une vie entièrement basée sur l’ARN, et non sur l’ADN qui serait traduit, par l’intermédiaire d’ARN en protéines. Cela fait trop de molécules complexes d’un seul coup… Et cela pose inévitablement la question de l’auto-organisation des molécules d’ARN… Bref, sans trop m’étendre, beaucoup d’équipes de chimistes étudient actuellement la question, et par exemple lorsqu’on dépose de l’ARN peptidique sur une plaque de verre, on a pu observer la formation de vésicules, de bicouches, et même de semblant de « pores », ce qui montre que ces molécules modèles peuvent non seulement s’auto-assembler, mais aussi reproduire des structures nécessaires à des organismes vivants primitifs… [1]
Maintenant, voyons ce que produit l’homme, dans son laboratoire… Tout d’abord, il y a la fascination des molécules qui s’auto-assemblent… et leurs mises au point :
Voici ce que réalisait l’équipe de J.M. Lehn, il y a une vingtaine d’année ([2], [3]):

Ce qui est assez formidable, ici, c’est qu’il y a une véritable « reconnaissance » des ions par les molécules organiques, avec une formation de double hélice autour des ions cuivres, et d’une triple hélice autour des ions nickels. Et pas de mélange entre les deux structures…

Et beaucoup plus récemment, ce qu’on a pu voir dans Science ([4]):

Là, ce qui est très amusant, c’est que des variations quasi infimes dans la partie « organique » de l’assemblage conduit à la formation de composés sphériques de tailles différentes. Un mélange des deux composés (1 et 3) conduit à des sphères de tailles intermédiaires…

Et puis, il y a l’utilisation de ce principe d’auto-organisation, pour fabriquer de nouveaux composés, de manière intelligente ([5]). (je crois que dire des molécules qu’elles sont intelligentes est complètement idiot. Disons que c’est le chimiste qui, dans ce cas, fait preuve d’intelligence remarquable, ce qui est rare, mais qui peut arriver). Et c’est  à nouveau notre prix Nobel J.M. Lehn qui a commencé : l’idée, c’est de travailler avec plein de petites molécules, qui vont être autant de briques élémentaires, de forme et de taille variées, qui peuvent s’allier entre elles de façon parfaitement réversibles.
Donc on les met toutes ensembles (par exemple, une dizaine, ce qui fait déjà un nombre gigantesque de combinaisons possibles) et surtout, on ne s’arrête pas là. On rajoute… une cible. En recherche pharmaceutique, on a des cibles biologiques, comme des « serrures »  (protéines par exemple) et on cherche des composants qui vont pouvoir agir dessus, des « clés » correspondantes. Ce qui va se passer ? les molécules vont se lier et se délier de toutes les manières possibles, y compris de la « bonne » manière : la bonne « clé » va se former, être sélectionnée par la « serrure ». On aura trouvé la bonne molécule pour la cible en question… Un petit schéma (légendé en anglais) pour mieux voir…

Figure 1 C’est plus clair, non ?
Bon, bref, l’idée est géniale (oui, je suis fan de JM Lehn) , on appelle cela la constitution de librairie « dynamique » de composés (auto-assemblés, on pourrait ajouter)…

Bon, une fois que j’ai donné ces quelques exemples de molécules qui s’auto-organisent, pensons à l’étape d’après : à quand des systèmes chimiques auto-réplicants ? autre formulation, moyennant quelques raccourcis épistémologiques, à quand une vie réellement artificielle ?

Sources :
[1] : Voir par exemple . Lazar A.N., Coleman A.W., Terenzi S,.Strazewski P.. Chem.Com. 2006, 1, 63-65. et puis de nombreux articles wikipedia et autre sur la chimie prébiotique.
[2] : Kramer, R.; Lehn, J. -M.; Marquis-Rigault, A. Proc. Natl. Acad. Sci. USA 199390, 5394.
[3] : Voir aussi (et surtout !) la revue de Lehn (en accès libre): Machado V.G., Baxter P.N.W., Lehn J.M. J. Braz. Chem. Soc. 200112,431-462.
[4] Sun et al. Science 2010, 328, 1144-1147.
[5] Huc I., Lehn J.M. A. Proc. Natl. Acad. Sci. USA 199794, 2106-2110.

A lire aussi, évidemment le document écrit (« Nobel Lecture« ) par Lehn pour son prix, en 1987.